❓Почему кто-то может предпочесть иерархическую кластеризацию вместо кластеризации на основе разбиения
1. Многоуровневая структура кластеров Иерархические методы способны выявлять вложенные структуры: можно увидеть, как малые кластеры объединяются в более крупные. Это особенно полезно, если данные имеют естественную иерархию.
2. Гибкость при выборе количества кластеров В отличие от методов типа K-средних, где нужно заранее задать число кластеров, иерархическая кластеризация позволяет определить их после построения, анализируя дендрограмму (древовидное представление).
3. Хороша для анализа и интерпретации Иерархическая кластеризация часто применяется в задачах, где важно понять структуру и взаимосвязи между объектами — например, в биоинформатике (кластеризация генов), лингвистике (группировка слов), маркетинге (иерархия клиентов).
⚠️Ограничения:
➡️ Сложность по вычислениям: стандартные алгоритмы имеют сложность $O(n^2)$ по памяти и времени, что делает их неэффективными для больших наборов данных. ➡️ Чувствительность к шуму и выбросам: особенно при использовании метрик расстояния без устойчивости к выбросам.
❓Почему кто-то может предпочесть иерархическую кластеризацию вместо кластеризации на основе разбиения
1. Многоуровневая структура кластеров Иерархические методы способны выявлять вложенные структуры: можно увидеть, как малые кластеры объединяются в более крупные. Это особенно полезно, если данные имеют естественную иерархию.
2. Гибкость при выборе количества кластеров В отличие от методов типа K-средних, где нужно заранее задать число кластеров, иерархическая кластеризация позволяет определить их после построения, анализируя дендрограмму (древовидное представление).
3. Хороша для анализа и интерпретации Иерархическая кластеризация часто применяется в задачах, где важно понять структуру и взаимосвязи между объектами — например, в биоинформатике (кластеризация генов), лингвистике (группировка слов), маркетинге (иерархия клиентов).
⚠️Ограничения:
➡️ Сложность по вычислениям: стандартные алгоритмы имеют сложность $O(n^2)$ по памяти и времени, что делает их неэффективными для больших наборов данных. ➡️ Чувствительность к шуму и выбросам: особенно при использовании метрик расстояния без устойчивости к выбросам.
A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.
The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.
Библиотека собеса по Data Science | вопросы с собеседований from ua